为了获得尺寸和表面光洁的工件,或者为了减少金属氧化以达到保护模具、减少加工余量等目的,可以采用各种少无氧化加热炉。金属波纹管生产在敞焰的少无氧化加热炉内,利用燃料的不完全燃烧产生还原性气体,在其中加热工件可使氧化烧损率降低到0.3%以下。可控气氛炉是使用人工制备的气氛,通入炉内可进行气体渗碳、碳氮共渗、光亮淬火、正火、退火等热处理:以达到改变金相组织、提高工件机械性能的目的。销售金属波纹管在流动粒子炉中,利用燃料的燃烧气体,或外部施加的其他流化剂,强行流过炉床上的石墨粒子或其他惰性粒子层,工件埋在粒子层中能实现强化加热,也可进行渗碳、氮化等各种无氧化加热。在盐浴炉内,用熔融的盐液作为加热介质,可防止工件氧化和脱碳。
工业炉还广泛应用于其他工业,如冶金工业的金属熔炼炉、矿石烧结炉和炼焦炉;河北金属波纹管石油工业的蒸馏炉和裂化炉;煤气工业的发生炉;硅酸盐工业的水泥窑和玻璃熔化、玻璃退火炉; 食品工业的烘烤炉等。 工业炉的创造和发展对人类进步起着十分重要的作用。中国在商代出现了较为完善的炼铜炉,炉温达到1200℃,炉子内径达0. 8 米。在春秋战国时期,人们在熔铜炉的基础上进一步掌握了提高炉温的技术,从而生产出了铸铁。 1794 年,世界上出现了熔炼铸铁的直筒形冲天炉。金属波纹管生产后到1864 年,法国人马丁运用英国人西门子的蓄热式炉原理,建造了用气体燃料加热的台炼钢平炉。他利用蓄热室对空气和煤气进行高温预热,从而保证了炼钢所需的1600℃以上的温度。1900 年前后,电能供应逐渐充足,开始使用各种电阻炉、电弧炉和有芯感应炉。
回收利用烟气带走的热量占燃料炉总供热量的30%~70%,充分回收烟气余热是节约能源的主要途径[8]。销售金属波纹管通常烟气余热利用途径有:(1)装设预热器,利用烟气预热助燃空气和燃料。(2)装设余热锅炉,产生热水或蒸汽,以供生产或生活用。(3)利用烟气作为低温炉的热源或用来预热冷的工件或炉料。回收烟气余热的有效和应用广的是换热器。我国开发和推广应用的高效换热器有片状换热器,各种喷流换热器,金属波纹管生产各种插入件管式换热器,旋流管式换热器,麻花管式换热器,各种组合式换热器,煤气管状换热器和蓄热式换热器等。蓄热式换热器是今后技术发展趋势,其余热利用后的废气排放温度在200℃以下,节能效益可达30%以上。
检测控制我国工业炉的能源消耗大,浪费严重,普遍存在空气过剩系数过大的问题,这主要是由于调节手段的落后,金属波纹管生产工人的劳动强度较大,难以保证理想的燃烧工况。因此提高热工检测与控制水平,具有很大的节能潜力。采用先进的自动控制技术,特别是采用微机控制系统,已经成为工业炉自动控制的发展方向。通过设置自动控制系统,销售金属波纹管以各相关系统的及时配合和控制来实现节能。诸如加热炉各主要过程变量的定量控制,炉温与燃料流量的串级控制,燃料与助燃空气的比值控制以及烟道废气的含氧量控制等。
工业炉的结构、加热工艺、温度控制和炉内气氛等,都会直接影响加工后的产品质量。河北金属波纹管在锻造加热炉内,提高金属的加热温度,可以降低变形阻力,但温度过高会引起晶粒长大、氧化或过烧,严重影响工件质量。在热处理过程中,如果把钢加热到临界温度以上的某一点,然后突然冷却,就能提高钢的硬度和强度;金属波纹管生产如果加热到临界温度以下的某一点后缓慢冷却,则又能使钢的硬度降低而使韧性提高。
为了使炉温恒定和实现规定的升温速度,除必须根据工艺要求、预热器和炉用机械型式、燃料和燃烧装置类别、工业炉排烟方式等确定优良的炉型结构外,还需要对燃料和助燃空气的流量和压力,销售金属波纹管或对电功率等可控变量通过各种控制单元进行相互调节,以实现炉温、炉气氛或炉压的自动控制工业炉行业采用脉冲燃烧的必要性高档工业产品对炉内温度场的均匀性要求较高,金属波纹管生产对燃烧气氛的稳定可控性要求较高,使用传统的连续燃烧控制无法实现。随着宽断面、大容量的工业炉的出现,必须采用脉冲燃烧控制技术才能控制炉内温度场的均匀性。